Skip to contents

Calculates probabilities and expected counts across hierarchical levels (trial, subset, set) in a structured population. Uses trial probabilities and handles nested sampling with conditional probabilities.

Usage

trial_totals(
  mcmodule,
  mc_names,
  trials_n,
  subsets_n = NULL,
  subsets_p = NULL,
  name = NULL,
  prefix = NULL,
  combine_prob = TRUE,
  all_suffix = NULL,
  level_suffix = c(trial = "trial", subset = "subset", set = "set"),
  mctable = set_mctable(),
  agg_keys = NULL,
  agg_suffix = "agg",
  keep_variates = FALSE,
  summary = TRUE
)

Arguments

mcmodule

mcmodule object containing input data and node structure

mc_names

Vector of node names to process

trials_n

Trial count column name

subsets_n

Subset count column name (optional)

subsets_p

Subset prevalence column name (optional)

name

Custom name for output nodes (optional)

prefix

Prefix for output node names (optional)

combine_prob

Combine probability of all nodes assuming independence (default: TRUE)

all_suffix

Suffix for combined node name (default: "all")

level_suffix

A list of suffixes for each hierarchical level (default: c(trial="trial",subset="subset",set="set"))

mctable

Data frame containing Monte Carlo nodes definitions (default: set_mctable())

agg_keys

Column names for aggregation (optional)

agg_suffix

Suffix for aggregated node names (default: "agg")

keep_variates

whether to preserve individual values (default: FALSE)

summary

Include summary statistics if TRUE (default: TRUE)

Value

Updated mcmodule object containing:

  • Combined node probabilities

  • Probabilities and counts at trial level

  • Probabilities and counts at subset level

  • Probabilities and counts at set level

Examples

imports_mcmodule <- trial_totals(
  mcmodule = imports_mcmodule,
  mc_names = "no_detect_a",
  trials_n = "animals_n",
  subsets_n = "farms_n",
  subsets_p = "h_prev",
  mctable = imports_mctable
)
print(imports_mcmodule$node_list$no_detect_a_set$summary)
#>           mc_name pathogen origin      mean          sd       Min      2.5%
#> 1 no_detect_a_set        a   nord 0.3750450 0.020108413 0.3410136 0.3426586
#> 2 no_detect_a_set        a  south 0.2978174 0.064004187 0.1829532 0.1888451
#> 3 no_detect_a_set        a   east 0.6025875 0.045383047 0.5218729 0.5261802
#> 4 no_detect_a_set        b   nord 0.9875566 0.008070346 0.9689414 0.9704140
#> 5 no_detect_a_set        b  south 0.9594431 0.008275134 0.9437901 0.9446762
#> 6 no_detect_a_set        b   east 0.9668884 0.020678650 0.9177136 0.9230652
#>         25%       50%       75%     97.5%       Max  nsv Na's
#> 1 0.3576956 0.3748559 0.3928853 0.4077016 0.4094812 1001    0
#> 2 0.2433367 0.3015970 0.3524411 0.3964220 0.4010001 1001    0
#> 3 0.5639605 0.6023181 0.6424667 0.6752938 0.6794225 1001    0
#> 4 0.9814800 0.9895902 0.9944236 0.9973534 0.9975015 1001    0
#> 5 0.9522929 0.9602068 0.9668934 0.9712431 0.9717516 1001    0
#> 6 0.9523051 0.9715396 0.9847453 0.9916434 0.9921812 1001    0