Skip to contents

All functions

add_group_id()
Add Group IDs to Data Frames
add_prefix()
Add Prefix to Node Names
agg_totals()
Aggregate Node Values Across Groups
animal_imports
Example Animal Import Data
at_least_one()
Calculate Combined Probability of Events (At least one)
combine_modules()
Combine Two Modules
create_mc_nodes()
Create Monte Carlo Nodes from Data and Configuration Table
eval_module()
Evaluate a Monte Carlo Model Expression and create an mcmcmodule
get_edge_table()
Generate Edge Table for Network Construction
get_mcmodule_nodes()
Get Nodes from Monte Carlo Module
get_node_list()
Create Node List from Model Expression
get_node_table()
Generate Node Table for Network Construction
imports_data
Merged Import Data for Risk Assessment
imports_data_keys
Example Data Keys for Animal Imports Risk Assessment
imports_exp
Expression for calculating import infection probability
imports_mcmodule
Example mcmodule object containing Monte Carlo simulation results Animal Imports Risk Assessment
imports_mctable
Example Monte Carlo Input Table for Import Risk Assessment
keys_match()
Match and align keys between two datasets
mc_keys()
Get Monte Carlo Node Keys
mc_match()
Match Monte Carlo Nodes
mc_match_data()
Match Monte Carlo Node with other data frame
mc_network()
Create Interactive Network Visualization
mc_summary()
Compute summary statistics for an mcnode object
mc_summary_keys()
Get mcnode summary keys
mcmodule_converg()
Monte Carlo Simulation Convergence Analysis
mcmodule_index()
Monte Carlo Module Index
mcmodule_rel_change()
Calculate Relative Change in Monte Carlo Module
mcmodule_spearman()
Calculate Spearman Correlation for Monte Carlo Module
mcnode_na_rm()
Replace NA and Infinite Values in mcnode Objects
node_list_summary()
Include summary and keys in node_list
prevalence_region
Regional Prevalence Data
reset_data_keys()
Reset Data Keys
reset_mctable()
Reset Monte Carlo Inputs Table
set_data_keys()
Set or Get Global Data Keys
set_mctable()
Set or Get Monte Carlo Inputs Table
test_sensitivity
Test Sensitivity Data
trial_totals()
Calculate Probabilities and Expected Counts Across Hierarchical Levels
visNetwork_edges()
Generate visNetwork Edge Table
visNetwork_nodes()
Generate Network Node Table for Visualization
wif_match()
Match Datasets With Differing Scenarios